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ABSTRACT 

This paper presents an automatic system for fire detection in video sequences.  There are 

several previous methods to detect fire, however, all except two use spectroscopy or particle 
sensors.  The two that use visual information suffer from the inability to cope with a moving 

camera or a moving scene. One of these is not able to work on general data, such as movie 
sequences.  The other is too simplistic and unrestrictive in determining what is considered fire;  
so that it can be used reliably only in aircraft dry bays. We propose a system that uses color and 

motion information computed from video sequences to locate fire.   This is done by first using an 
approach that is based upon creating a Gaussian-smoothed color histogram to detect the fire-

colored pixels, and then using a temporal variation of pixels to determine which of these pixels 
are actually fire pixels. Next, some spurious fire pixels are automatically removed using an erode 
operation, and some missing fire pixels are found using region growing method. Unlike the two 

previous vision-based methods for fire detection, our method is applicable to more areas because 
of its insensitivity to camera motion. Two specific applications not possible with previous 

algorithms are the recognition of fire in the presence of global camera motion or scene motion 
and the recognition of fire in movies for possible use in an automatic rating system.  We show 
that our method works in a variety of conditions, and that it can automatically determine when it 

has insufficient information. 

INTRODUCTION 

Visual fire detection has the potential to 

be useful in conditions in which 
conventional methods cannot be used – 
especially in the recognition of fire in 

movies.  This could be useful in categorizing 
movies according to the level of violence.  A 

vision-based approach also serves to 

supplement current methods.  Particle 

sampling, temperature sampling, and air 
transparency testing are simple methods 

used most frequently today for fire detection 
(e.g. Cleary, 1999; Davis, 1999).  
Unfortunately, these methods require a close 

proximity to the fire.  In addition, these 
methods are not always reliable, as they do 

not always detect the combustion itself.  
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Most detect smoke, which could be 
produced in other ways.   

Existing methods of visual fire detection 
rely almost exclusively upon spectral 

analysis using rare and usually costly 
spectroscopy equipment.  This limits fire 
detection to those individuals who can 

afford the high prices of the expensive 
sensors that are necessary to implement 

these methods.  In addition, these 
approaches are still vulnerable to false 
alarms caused by objects that are the same 

color as fire, especially the sun. 

Another method used in the system reported 

in Plumb, 1996 makes use of specialized 
point-based thermal sensors which change 
intensity based upon temperature.  A black 

and white camera is used to observe these 
intensity changes at the various locations.  

Using the heat-transfer flow model gained 
from these sensors, a computer solves for 
the location, size and intensity of the 

problem using the appropriately named 
inverse problem solution.  Though this 

would be more precise than our method in 
finding the center of the blaze, it requires 
sensors that our method does not.  In 

addition, the exact position of these sensors 
must be calibrated for this algorithm to be 

effective. 

The method described in this paper 
employs only color video input, does not 

require a stationary camera, and is designed 
to detect fire in nearly any environment, 

with a minimum camera speed of about 30 
frames per second.  In addition, it may be 
implemented more effectively through the 

use of other imagery, if it is available, 
besides imagery in the visible spectrum, 

because the training method can use all 
available color information.  

In our method a color predicate is built  

using the method presented in sections 2.1 

and 2.2.  Based upon both the color 
properties, and the temporal variation of a 

small subset of images (section 3), a label is 
assigned to each pixel location indicating if 

it is a fire pixel (section 4).  Based upon 
some conditions also presented in section 4, 
we can determine if this test will be reliable.  

The reason this is an effective combination 
is explained in section 5.  If the test to find 

fire has been successful, an erode operation 
(section 6) is performed to remove spurious 
fire pixels.  A region-growing algorithm 

designed to find fire regions not initially 
found follows this (section 7).  An overall 

summary of the steps of this fire-finding 
algorithm is given in section 8. The results 
presented in section 9 show the effectiveness 

of this algorithm.  Future work and 
conclusions follow in sections 10 and 11, 

respectively.  

Matching techniques 

Block-correlation 

Block-based motion estimation algorithms 
consider a block of pixels in one image and 

search for the corresponding block in the 
next image. Some correlation measure is 
usually used for matching. These methods 

are also referred to as area-based, 
correlation- like, or template matching 

methods Error! Reference source not 

found.. Block-based methods require a huge 
amount of computations since all possible 

motions within some search window must 
be evaluated (Figure 1).  

 

 

 

 

Figure 1. Block-matching. 
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The block-size will affect the resolution of 
the estimated motion field. A small block-

size provides a detailed motion field but is 
also more vulnerable to false motion 

estimates since the correlation measure 
might provide false matches due to noise. A 
large block-size gives a more robust but less 

detailed motion estimate. However, the total 
number of computations does not depend on 

the block-size.  

It is possible to reduce the amount of 
computations by using hierarchical search 

patterns. A rough estimate is determined 
with larger blocks at low resolution levels. 

Estimates are then fine-tuned at higher 
resolution levels with smaller blocks.  

Block matching algorithms differ in search 

strategy and matching criteria. A search may 
be performed over the whole image or 

within a small window. The most common 
matching criteria are the sum of squared 
difference (SSD) 

2

2 1

,

, , ,
x y

SSD u v I x u y v I x y  

or the sum of absolute difference (SAD)  
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,

, , ,
x y

SAD u v I x u y v I x y  

The displacement estimate is the vector (u,v) 

that minimizes the SSD or SAD criterion. It 
is assumed that all pixels belonging to one 
block have a single displacement vector, 

which is a special case of the local 
smoothness constraint (same as for Lucas 

and Kanade's method). Minimizing the SSD 
or SAD criteria can be seen as imposing the 
optical flow constraint on the entire block.  

SUPPORT VECTOR MACHINE BASED 

CLASSIFICATION  

 

The basic idea behind the SVM classification 
technique is  to identify the class of the input test 

vectors. This is a supervised learning algorithm, 
where the training vectors are used to train the 

system to map these training vectors  in a space 
with clear gaps between them using some 
standard kernel functions and the input test 

vectors are mapped on to the same space to 
predict the possible class [24], [25].  

Given some training data D, a set of n points 

of the form 

 

where the yi is either belonging to the class 1 

or class  −1, indicating the class to which the 
point Xi belongs. Each Xi is a p-dimensional 

real vector.  Here it is needed to find the 
maximum-margin hyperplane that divides 
the points having yi=1 from those having yi= 

- 1.  So any hyperplane can be written as the 
set of points  satisfying 

  

Fig 2. SVM Scenario 

 

Maximum-margin hyperplane and margins 
for an SVM trained with samples from two 
classes. Samples on the margin are called 

the support vectors.w.x – b = 0 

http://en.wikipedia.org/wiki/Real_number
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where denotes the dot product and  is the 
normal vector to the hyperplane. The 

parameter b/||w|| determines the offset of the 
hyperplane from the origin along the normal 

vector . 

If the training data are linearly separable, 
then two hyperplanes can be selected in such 
a way that they separate the data and there 

are no points between them, and then tried 
to maximize their distance. The region 

bounded by them is called "the margin". 
These hyperplanes can be described by the 
equations 

w.x – b =1 

and 

w.x – b = -1 

At the testing phase, the data points Xi are 
separated using the following constraints 

w.xi – b≥1 for xi of the first class or 

w.xi – b≤1 for xi  of the second class. 

 

EXISTING SYSTEM 

 

The very interesting dynamics of flames 

have motivated the use of motion estimators 
to distinguish fire from other types of 

motion. Two novel optical flow estimators, 
OMT and NSD, have been presented that 
overcome insufficiencies of classical optical 

flow models when applied to fire content. 

The obtained motion fields provide useful 
space on which to define motion features. 

These features reliably detect fire and reject 
non-fire motion, as demonstrated on a large 

dataset of real videos. Few false detections 
are observed in the presence of significant 
noise, partial occlusions, and rapid angle 

change. In an experiment using fire 
simulations, the discriminatory power of the 

selected features is demonstrated to separate 
fire motion from rigid motion. The 
controlled nature of this experiment allows 

for the quantitative evaluation of parameter 
changes. Key results are the need for a 

minimum spatial resolution, robustness to 
changes in the frame rate, and maximum 
allowable bounds on the additive noise 

level. 

PROBLEMS IN EXISTING SYSTEM  

1. The algorithm is very complex. 

2. Application is restricted to flow 
calculation  and consumes more time 
because of BPN 

3. Unstablized video may give wrong 
and in accurate results in the existing 

works. 

PROPOSED SYSTEM 

2.1. Color DetectionAn often-used 
technique to identify fire employs models 

generated through color spectroscopy. We 
did not use this approach because models 

may ignore slight irregularities not 
considered for the type of burning material.  
Instead, our system is based upon training; 

using test data from which the fire has been 
isolated manually to create a color lookup 

table, usually known as a color predicate. 
This is accomplished using the algorithm 
described in Kjedlsen, 1996, which creates a 

thresholded Gaussian-smoothed color 
histogram.   Note that this manual step is for 

training only, not for detection itself.  It 
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would be possible to create a fixed model of 
fire color, but our approach allows for 

increased accuracy if training sequences are 
available for specific kinds of fires, while if 

training sequences are not available, it 
allows for a generic fire look-up table 
(assuming the user can create a generic, all-

purpose fire probability table).  Under most 
circumstances, this method is scene-specific.  

This will only change the predicate if there 
are similar colors in both the background 
and the foreground.  We do not consider this 

case of prime importance because fires are 
of higher intensity than most backgrounds, 

and the motion component of this algorithm 
further eliminates similarly colored 
backgrounds. 

This algorithm for color lookup may be 
summarized by the following steps: 

1) Create pairs of training images – each 
pair consists of a color image, and a 
Boolean mask, which specifies the 

locations at which the target object 
occurs.  For every pixel in each image 

which represents a color that is being 
searched for, there should be a “1” in the 
corresponding location in the Boolean 

mask, and a “0” for every background 
location.  From our tests, we found ten 

training images from five of our data 
sets to be sufficient to construct an 

effective color predicate.  In order for 
this to be sufficient, it is necessary to 
ensure a variety of scenes.  We used 

several shots from professional movies 
and one from a home-made video 

sequence.  Sample masks and images are 
shown in figure 1. 

2) Construct a color histogram as follows: 

for every pixel location in the image, if 
the value in the corresponding mask 

location is “1” then add a Gaussian 
distribution to the color histogram 
centered at the color value that 

corresponds to the color of the individual 
pixel.  Otherwise, if the value in the 

corresponding mask location is “0,” then 
subtract a smaller Gaussian distribution 
from the color histogram centered at the 

color value that corresponds to the color 
of the individual pixel.  For our work, 

the positive examples used a Gaussian 

with =2, and the negative examples 

used a Gaussian with =1. 
 

     

     
Figure 1:  The first row shows  the original images, while the second shows   manually created 

fire masks. These were a few of the images used to learn the colors found in fire.  
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3) Threshold the Gaussian smoothed color 
histogram to the desired level, resulting 

in a function which we shall call 
Colorlookup, which, given an (R,G,B) 

triple, will return a Boolean value, 
indicating whether or not an input color 
is in the desired color region. 

 
For our tests, we trained using the images 

shown above, along with three to eight 
images sampled from two other image sets.  
We have found that it is not as important to 

ensure a particular image, or particular 
quantity of images.  Rather, it was crucial 

that we include a variety of colors, and use 
the highest quality recordings.  For this 
reason, color predicates that we produced 

using our own video sequences, rather than 
those which include video exclusively from 

old VHS tapes, performed better than those 
that do not include our own footage. 

2.2. Color in Video 

Fire is gaseous, and as a result, in addition to 
becoming translucent, it may disperse 

enough to become undetectable, as in figure 
2.  This necessitates that we average the fire 

color estimate over small windows of time.   
A simple way to compute the probability 
that a pixel is  fire-colored over a sequence 

is by averaging over time the probability 
that such a pixel is fire. 

More precisely: 

n

yxPpColorlooku

yxColorprob
i

n

i

)),((

),( 1  

 ),( if 0 

),( if 1
),(

1

1

kyxColorprob

kyxColorprob
yxColor  

where Colorlookup is the Boolean color 
predicate produced by the algorithm in 

section 2.1, n is the number of images in a 

sequence subset, Pi is the ith  frame in a 
sequence subset.  Pi(x,y) is the (R,G,B)  

triple found at location (x,y) in the ith  image, 
and k1 is an experimentally determined 

constant.  From our experimentation, we 
have determined that choosing n to be 
between 3 and 7 is sufficient at 30 frames 

per second.  Colorprob is a probability 
(between zero and one) indicating how often 

fire color occurs in the image subset in each 
pixel location, while Color is a predicate 
that indicates whether or not fire is present 

at all. From experimentation, we determined 
that fire must be detected at least 1/5 of the 

time by color to indicate the presence of fire.  
For this reason, we set 

k1 to 0.2. 

 

3. Finding Temporal Variation 

Color alone is not enough to identify fire.  

There are many things that share the same 
color as fire that are not fire, such as a desert 

sun and red leaves.   The key to 
distinguishing between the fire and the fire-
colored objects is the nature of their motion.  

Between consecutive frames (at 30 frames 
per second), fire moves significantly (see 

1

)),(()),((
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1
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figure 3).  The flames in fire dance around, 
so any particular pixel will only see fire for 

a fraction of the time. 

In our approach, we employ temporal 

variation in conjunction with fire color to 
detect fire pixels. Temporal variation for 
each pixel, denoted by Diffs, is computed by 

finding the average of pixel-by-pixel 
absolute intensity difference between 

consecutive frames, for a set of images. 
However, this difference may be misleading, 
because the pixel intensity may also vary 

due to global motion in addition to fire 
flicker. Therefore, we also compute the 

pixel-by-pixel intensity difference for non-
fire color pixels, denoted by nonfireDiffs, 
and subtract that quantity from the Diffs  to 

remove the effect of global motion: 

The highest possible temporal variation 

occurs in the case of flicker, that is, when a 
pixel is changing rapidly from one intensity 
value to another.  This generally occurs only 

in the presence of fire.  Motion of rigid 
bodies, in contrast, produces lower temporal 

variation. Therefore by first correcting for 
the temporal variation of non-fire pixels, it is 
possible to determine if fire-colored pixels 

actually represent fire.  This is done as 
follows: 

1) Deciding which pixels are fire 
candidates using Color. 

2) Finding the average change in 

intensity of all non-fire candidate 
pixels 

3) Subtracting this average value from 
the value in Diffs at each location. 

 

Figure 4 shows the importance of the result 
of this step.  The sun in the figure is fire 

colored, but because it does not move much 
throughout the course of the sequence, the 

I for each pixel in the sequence is small, 

and thus indicative that no fire has been 
found. Figure 4 shows the importance of the 

result of this step.  The sun in the figure is 
fire colored, but because it does not move 

much throughout the course of the sequence, 

the I for each pixel in the sequence is 

small, and thus indicative that no fire has 
been found. 

4.  Finding Fire 

Our test to find fire is directly dependent 
upon both color and temporal variation, that 

is a pixel should be a fire color and it should 
have significant temporal variation. This is 
best expressed by a simple conjunction: 

                                        otherwise  0    

I and  1 if  1
),(

2k(x,y)y)Color(x,
yxFire  

where k2 is an experimentally 
determined constant. 

 

This is a binary measure of the temporal 
variation of the fire-colored pixels. There 

are several exceptions that indicate that 
merely computing the predicate Fire is not 

enough.  The first of these occurs 
specifically in sunlight.  Sunlight may 
reflect randomly, causing new light sources 

to appear and disappear in those reflecting 
regions.  For that reason, there are often 

some pixels in an image containing the sun 
that have a temporal variation high enough 
to be recognized as fire.  We put sequences, 

which contain a high number of fire-colored 
pixels, but which have a low number of fast 

moving fire-colored pixels into a “fire 
unlikely/undetectable” class.  Specifically, 
we count the number of pixels in the image  

that are “1” in the predicate Fire (they have 
fire color and significant temporal variation) 

and compare it to total number of fire-
colored pixels (i.e. those that are “1” in 
Color).  If the number of fire colored pixels 
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is less than some threshold, then we say that 
there is no fire in the sequence at all.  For 

our tests, this threshold was 10 pixels.   If 
the number of pixels detected as fire is 

greater than this threshold, but the ratio of 
pixels that are “1” in Fire to fire-colored 
pixels is low, then the sequence is placed 

into the “fire unlikely/undetectable” class.  
For our tests, if no more than one out of 

every thousand fire-colored pixels is found 
to be in the predicate Fire, then the sequence 
subset is put into the “fire 

unlikely/undetectable” class. There is one 
other case that contains fire that this method 

is unable to detect: if a sequence is recorded 
close enough to a fire, the fire may fully 
saturate the images with light, keeping the 

camera from observing changes or even 
colors other than white.  Therefore, if 

contrast is very low and intensity is very 
high, as in figure 5, sequences are put into a 
“fire likely/undetectable” class.  

 

Note that with respect to the fire detection 

task, it is possible that color and motion 
information could result in the same 
information so that knowing one is the same 

as knowing the other.  In order to determine 
the correlation, we took a random sampling 

of 81,000 points from video data used in our 
experiments.  For each point, we stored 

 

1. The value of Diffs 
2. The value of Color 

 

We then computed , the correlation 

coefficient: 

)(

))((

yx

yixi

n

yx
 

where x i  is the ith sample taken from Color, 
yi is the ith sample taken from Diffs, n is the 

size of the sample, x and y are the sample 

means of Color  and Diffs, and x  and y are 

the sample standard deviations taken from 
Color and Diffs, respectively.  The 

correlation we measured by this method was 
.072, indicating that these two cues are 

independent. 

Improving fire detection by using erosion 

and region growing: 

One of the largest problems in the 
detection of fire is the reflection of fire upon 

the objects near the fire. However, barring 
surfaces with high reflectivity, such as 
mirrors, reflections tend to be incomplete.  

An erode operation can eliminate most of 
the reflection in an image. For our study, the 

following erode operation worked the best: 
examine the eight-neighbors of each pixel, 
remove all pixels from Fire that have less 

than five eight-neighbors, which are fire 
pixels.     

The output from the erosion stage will 
contain only the most likely fire candidates; 
to have avoided false positives thus far, our 

conservative strategy will not have detected 
all of the fire in a sequence subset.   Thus, 

this is not an accurate measure of the total 
quantity of fire in the sequence subset. For 
one thing, some of the fire in a sequence will 

not appear to be moving because it is right 
in the center of the fire.  Hence, in order to 

find the rest of the flame, it is necessary to 
grow regions by examining color alone.  

To find all fire pixels in a sequence, we 

apply the region-growing algorithm.  We 
recursively look at all connected neighbors 

of each FIRE pixel and label them FIRE if 
they are of fire color. Here we relax the 
threshold for fire predicate, therefore pixels 

which were not detected as fire will be now 
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be detected as fire if they are neighbors of 
strong fire pixels. This is essentially a 

hysteresis process, which is very similar to 
hysteresis process using low and high 

threshold in Canny edge detection. This 
process is repeated until there is no change 
in pixels labels. During every iteration, the 

threshold for fire color is increased 
gradually.  

 

6. Complete Algorithm for Fire 

Detection 

Here we summarize all the steps in our 
algorithm.  

1. Manually select fire from images and create 
a color predicate using the algorithm in 
Kjedlsen, 1996 and summarized in section 

2.1.  Create a function that, given an 
(R,G,B) triple, returns a boolean.  Call this 

Colorlookup. 

 

  2.   For n consecutive images, 
calculate DIFFS, Colorprob, and Color: 

      

 

where Colorlookup is the predicate created 
in step #1. 

 

3.   Determine the net change of portions of 
the image that are not fire candidates based 

upon color, and compute from each value 

for the global difference, and subtract this 
from the resultant image to remove global 

motion.  

  First calculate: 

  

 and then calculate: 

 
 

fsNonfiredifyxDiffsyxI ),(),(   

 where the summation is over the 
(x,y) such that Color(x,y)<k1, and k1 -

is an experimentally determined 
constant. 

 

  4.    Create a fire Boolean image, 

    where k2 is  an 

experimentally determined constant.  

 

5. Classify sequence as “fire 

likely/undetectable” if the average 
intensity is above some 

experimentally determined value, 
k3. 

  6.a. Calculate the total number of 1’s 

in Color.    Call this number Numfire. 

     b. Calculate the total number of 1’s 

in Fire.  Call this number Foundfire. 
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    c. Calculate Foundfire/Numfire.  If 
this value is less than some 

experimentally determined constant, 
k4 classify the sequence as “No fire.” 

 

7. Examine the eight-neighbors (the 
eight adjacent pixels) of each pixel.  

Remove all pixels from Fire that 
have less than five eight-neighbors 

that are  
 

CONCLUSION 

This paper has presented a robust system for 

detecting fire in color video sequences.  This 

algorithm employs information gained 
through both color and temporal variation to 
detect fire.  We have shown a variety of 

conditions in which fire can be detected, and 
a way to determine when it cannot.  Through 

these tests, this method has shown promise 
for detecting fire in real world situations, 
and in movies. It is also useful in forensic 

and fire capture for computer graphics. 
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